1. 多元线性回归
多元线性回归简介:回归方程及系数的检验、自变量筛选方法
多元线性回归:SPSS实现
多重共线性问题
逐步回归分析
回归诊断
2. Logistic回归
Logistic 回归简介:应用背景、、回归模型、模型的评价指标等
Logistic回归:SPSS实现
回归系数的检验
回归系数的解释
累积Logistic回归简介
累积Logistic回归:SPSS实现
多项logistic回归简介
多项Logistic回归:SPSS实现
3. 聚类分析
聚类分析简介:基本目标、应用领域、基本思想、主要方法
系统聚类方法简介
系统聚类分析实例
非系统聚类方法,Two-Step聚类、K均值聚类方法简介
非系统聚类方法分析实例
4. 判别分析
判别分析简介:基本目标、与聚类分析区别、常用方法
判别分析应用实例
5. 数据降维技术
因子分析:问题背景、目的、分析的原则、基本思想、因子分析模型
主成份分析简介:指导思想、目的、与因子分析区别
因子/主成份个数的确定
因子旋转
因子得分
注意事项及应用建议
因子/主成分分析应用实例
6. 生存分析
生存分析简介:问题背景、基本概念与有关的统计问题、常用分析方法
Kaplan- Meier及Life table方法原理
Kaplan-Meier分析实例
Cox回归原理
Cox回归分析实例
带着随时间变化协变量的Cox回归
7. 高级方差分析
MANOVA( 多变量方差分析):问题背景、原理、分析实例
重复测量方差分析:问题背景、原理、分析实例
8. 时间序列分析简介
|