曙海教学优势
本课程,秉承二十一年积累的教学品质,以项目实现为导向,面向企事业项目实际需要,老师将会与您分享设计的全流程以及工具的综合使用经验、技巧。课程可定制,线上/线下/上门皆可,热线:4008699035。
曙海培训的课程培养了大批受企业欢迎的工程师。大批企业和曙海
建立了良好的合作关系,合作企业30万+。曙海培训的课程在业内有着响亮的知名度。
SAS数据统计分析培训课程
培训大纲:
一、 SAS总体概览
1.1 课程介绍(点击直接观看)
1.2 SAS系统介绍
1.3 SAS 模块介绍
1.4 SAS界面讲解
二、 SAS 数据集
2.1 SAS数据集与逻辑库
2.2 直接创建数据:手动创建
2.3 间接获取数据:访问本地文件与数据库
三、 SAS 语法
3.1 基本概念
3.2 语法规则
3.3 语法错误诊断与修正
四、 SAS编程之data步——数据预分析
案例1:如何管理数据集
案例2:数据格式的排列组合
案例3:数据的纵向汇总
案例4:条件语句的设置
五、SAS编程之proc步——统计描述
5.1 平均数和标准差的意义
5.2 正态分布有多重要
5.3 数据标准化变换
5.4 缺失值填补
六、 编程之proc步——统计推断
6.1 差异性分析
——假设检验原理
——t检验:判断组间差异
——方差分析:判断多组间差异
——协方差分析:存在协变量的群组差异
6.2 相关性分析
——散点图提供了变量间的关系模式
——变量关系的基础:pearson、spearman相关系数
——偏相关分析
——多变量相关性:典型相关
6.3 线性回归分析
6.4 稳健的logistics回归
预分析:卡方独立性检验
构建模型与模型诊断、修正
自变量筛选与多模型评估:roc曲线
自变量的筛选:逐步回归
何谓稳健?
6.5 poisson 回归
6.6 稳健回归
6.7 主成分分析
6.8 对应分析
预分析:频数、交叉表与卡方
一元对应分析:行为与选择的对应特征
多元对应分析:维度的意义
6.9 联合分析
七、数据挖掘(SAS/EM)
统计模型与数据挖掘的区别:数据量、数据精确度、时间、关注点
构建预测模型:购买倾向分析:基于回归、决策树、神经网络模型的预测