第一讲 数字图像基础
|
1.1 什么是数字图像?
1.2 图像感知和获取
1.3 图像的表达
1.4 图像处理的基本步骤
1.5 图像处理的应用实例
|
第二讲 空间域图像增强 |
2.1为什么进行图像增强
2.2 灰度直方图处理
2.3 平滑空域滤波器
2.4 锐化空域滤波器
2.5 混合空间滤波器
2.6 空间域滤波的应用案例
|
第三讲 频域图像增强 |
3.1 图像傅里叶变换
3.2 平滑频域滤波器
3.3 锐化频域滤波器
3.4 同态滤波器
3.5 频域滤波的应用案例
|
第四讲 小波变换和多分辨率处理 |
4.1 图像金字塔
4.2 多分辨率展开
4.3 一维小波变换
4.4 二维小波变换
4.5 小波变换的应用案例
|
第五讲 形态学图像处理 |
5.1 图像的膨胀与腐蚀
5.2 图像的开操作与闭操作
5.3 形态学算法提取图像特征
5.4 形态学算法提取图像特征的应用案例
|
第六讲 图像分割 |
6.1 间断检测
6.2 边缘颊侧和边界检测
6.3 基于区域的分割
6.4 基于聚类的分割
6.5 图像分割在目标追踪中的应用案例
|
第七讲 图像特征提取、描述与融合 |
7.1 图像的基本特征
7.2 图像纹理特征提取与分析
7.2 图像特征描述子
7.3 SIFT特征提取与描述
7.4 边界特征的提取与描述
7.5 图像特征的融合
7.6 SIFT图像特征的应用案例
|
第八讲 图像识别 |
8.1 模式与模式识别
8.2 图像匹配
8.3 目标识别
8.4 目标识别中的反馈机制
8.5 图像识别的应用案例
|
第九讲 深度学习在图像处理中的应用 |
9.1 人工神经网络的基本实现
9.2 深度学习的简介
9.3 深度学习与图像匹配的结合
9.4 深度学习与目标识别的结合
|